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HIGHLIGHTS

• The amphipathic phenylalanine-adsorbed layer contributes to form a nucleophilic–hydrophobic interface that homogenizes  Zn2+ flux 
while repelling  H2O molecules from contacting Zn anode.

• The preferential reduction of phenylalanine (Phe) prior to  H2O facilitates in situ formation of an organic–inorganic hybrid solid 
electrolyte interphase, enhancing the interfacial stability.

• Benefiting from the triple protection of Phe, the Zn||Zn and Zn||LMO cells display significantly improved electrochemical perfor-
mances, even at extreme diluted electrolytes.

ABSTRACT Aqueous  Zn2+-ion batteries (AZIBs), recognized for their high security, 
reliability, and cost efficiency, have garnered considerable attention. However, the prevalent 
issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly 
impede their practical application. In this study, we introduced a ubiquitous biomolecule 
of phenylalanine (Phe) into the electrolyte as a multifunctional additive to improve the 
reversibility of the Zn anode. Leveraging its exceptional nucleophilic characteristics, Phe 
molecules tend to coordinate with  Zn2+ ions for optimizing the solvation environment. 
Simultaneously, the distinctive lipophilicity of aromatic amino acids empowers Phe with 
a higher adsorption energy, enabling the construction of a multifunctional protective inter-
phase. The hydrophobic benzene ring ligands act as cleaners for repelling  H2O molecules, 
while the hydrophilic hydroxyl and carboxyl groups attract  Zn2+ ions for homogenizing 
 Zn2+ flux. Moreover, the preferential reduction of Phe molecules prior to  H2O facilitates the in situ formation of an organic–inorganic hybrid solid 
electrolyte interphase, enhancing the interfacial stability of the Zn anode. Consequently, Zn||Zn cells display improved reversibility, achieving an 
extended cycle life of 5250 h. Additionally, Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3% capacity after 300 cycles, demon-
strating substantial potential in advancing the commercialization of AZIBs.
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1 Introduction

Wearable and implantable electronics have rapidly evolved 
to meet the growing demands of modernized health care 
[1–3], including devices like smartwatches, cochlear 
implants, and cardiac pacemakers [4]. The sustained opera-
tion of implanted medical devices heavily relies on safe 
rechargeable batteries powering electronic circuitry for data 
acquisition, processing, and transmission [5]. Notably, aque-
ous  Zn2+-ion batteries (AZIBs) with inherently safe near-
neutral electrolytes, superior biocompatibility, and higher 
energy density have gained significant attention [6–9]. How-
ever, the practical applications encounter some challenges 
such as dendrite growth and corrosion of Zn anodes, com-
promising long-term reliability [10–12]. Dendrite growth 
could puncture the separator and leads to battery short cir-
cuits, while Zn anode corrosion consumes active Zn and 
electrolyte, shortening its service life [13–15].

To enhance Zn anode reliability by inhibiting parasitic 
reactions or guiding uniform Zn deposition, various strate-
gies, including electrode structure design [16–19], electrode 
interface modification [20–22], and electrolyte optimization 
[23–26], have been explored. Among these, the introduction 
of functional additives stands out as a feasible and effec-
tive approach with a substantial scale effect [27–29]. Previ-
ously, multiple mechanisms involving functional additives 
have demonstrated their role in achieving dendrite-free Zn 
anodes. For instance, the introduction of polar solvents like 
N-methyl-2-pyrrolidone (NMP) [30], N, N-dimethylforma-
mide (DMF) [31], and acetone (DMK) [32] effectively opti-
mizes the  Zn2+ solvation sheath by replacing coordinated 
 H2O, thereby restraining  H2O-induced parasitic reactions 
and enhancing Zn reversibility. Additionally, the introduc-
tion of positively charged molecules with electrostatic pref-
erential adsorption into the electrolyte induces an emerging 
progressive nucleation mechanism [27, 33, 34]. This mecha-
nism stabilizes the Zn anode by homogenizing electric fields 
and regulating Zn deposition behavior. However, a single 
regulation strategy targeting solvation structure or molecule 
adsorption may not fundamentally shield the Zn anode from 
corrosion caused by free  H2O molecules [35].

Hence, it is crucial to explore multifunctional additives 
that simultaneously reduce  H2O molecule reactivity while 
constructing a robust hydrophobic protective interface. 
Amino acids, ubiquitous biomolecules, have gained attention 

for their non-toxicity, biodegradability, and extensive use in 
the chemical industry as complexing agents and corrosion 
inhibitors [36, 37]. These molecules possess hydrophilic 
amino and carboxyl groups at either end and hydrophobic 
groups (e.g., methyl, isopropyl) in the middle, making them 
amphipathic compounds [38]. Their electron-rich nature 
enables excellent adsorption on metal electrode surfaces 
[37]. The hydrophilic units reduce interfacial free energy 
between the Zn electrode and electrolyte, facilitating  Zn2+ 
transfer [39]. The hydrophobic groups form a local hydro-
phobic film of closer to the electrolyte, suppressing water-
mediated parasitic side reactions [39]. Importantly, the pre-
cisely modifiable structure of hydrophobic groups allows for 
customizable additive design.

Based on the representative alanine, various derivatives 
with unique nucleophilic and hydrophobic characteristics 
can be created by grafting benzene ring, carboxyl, hydroxyl, 
and sulfhydryl groups onto the methyl, such as phenylala-
nine (Phe), aspartic acid (Asp), serine (Ser), and L-cysteine 
(Cys). Recent studies have shown that the aromatic mol-
ecules, such as benzoic acid, 3-hydroxytyramine hydrochlo-
ride, isophthalaldehyde, and 1,3-benzenedisulfonic acid dis-
odium salt, embrace higher adsorption energy and stronger 
chemisorption effect on the Zn surface that promotes an even 
electric field distribution at electrode/electrolyte interface, 
inducing the uniform Zn deposition [40]. Therefore, the Phe 
featuring benzene ring ligands was introduced into AZIBs as 
electrolyte additive. The theoretical simulation and experi-
mental evidence demonstrate that Phe (Figs. 1a and S1-S3) 
exhibits superior nucleophilic ability to coordinate with 
 Zn2+ ions, efficiently regulating solvation to weaken  H2O 
molecule reactivity. Moreover, the unique lipophilicity of 
aromatic amino acids enables Phe to possess higher adsorp-
tion energy on the Zn (002) facet, contributing to form an 
nucleophilic–hydrophobic protective interphase [40]. The 
hydrophobic benzene ring ligands within Phe molecules 
form a hydrophobic film that repels  H2O molecules. Simul-
taneously, the adjacent hydrophilic carboxyl and hydroxyl 
groups attract  Zn2+ ions to migrate to the Zn anode surface, 
guiding uniform Zn nucleation along the favorable (002) 
plane. Consequently, the addition of Phe at a concentration 
of 20 mmol  L−1 demonstrates a beneficial impact by reduc-
ing the onset of hydrogen evolution (Fig. 1b), decreasing 
the corrosion current density, and concurrently increasing 
the corrosion potential (Figs. 1c and S4), which surpasses 
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that of other derivatives in terms of corrosion inhibition. 
Finally, Zn||Zn symmetrical cells assembled using Phe-mod-
ified electrolytes exhibit enhanced Zn anode reversibility, 

achieving an ultralong cycle life of 5250 h at 2 mA  cm−2, 2 
mAh  cm−2, nearly 65 times higher than that in blank electro-
lytes, confirming its practical feasibility in AZIBs.

Fig. 1  Characterization of electrolyte system. a Schematic illustration for various derivatives of amino acids. b LSV curves and c corrosion cur-
rent density and potential derived from Tafel plots in 20 mmol  L−1 Phe/Asp/Ser/Cys additives electrolytes. d Electrostatic potential mapping of 
Phe molecule. e Images of ZSO/Phe system obtained from molecular dynamics simulations. f Radial distribution functions for  Zn2+-O  (H2O) 
and  Zn2+-O (Phe) in ZSO/Phe electrolyte. g 2H NMR spectra of  H2O from pure  D2O, ZSO, and ZSO/Phe system. h Raman spectra and i FTIR 
spectra for ZSO and ZSO/Phe system with various concentrations
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2  Experimental and Calculation

2.1  Preparation of Electrolytes and Electrodes

0.2 and 0.02 mol  ZnSO4·7H2O (Aladdin, > 99.99%) were 
dissolved in 100 mL deionized water, Phe (Adamas, > 99%) 
solution (0.02 mol  L−1) to obtain 2 mol  L−1  ZnSO4 elec-
trolyte, 0.2 mol  L−1  ZnSO4-based dilute electrolyte, and 
0.02 mol  L−1 Phe containing electrolyte, respectively. 0.1 mol 
 Li2SO4 (Macklin, > 99.9%) was dissolved in above solution 
to obtain hybrid electrolyte. Commercial Zn foil (100 µm) 
polished with sandpaper was cut into 11-mm-diameter disks 
for preparing Zn anode.  LiMn2O4 powders (Shenzhen kejing 
Co., Ltd), super-P carbon black (Nanjing XFNANO Materi-
als Tech Co., Ltd), and polyvinylidene fluoride were mixed 
to form slurry at a weight ratio of 8:1:1. Then the slurry was 
coated onto Ti foil at a mass loading of 2.5 mg  cm−2 and 
dried at 60 °C for 12 h to obtain LMO cathode.

2.2  Material Characterizations

Nuclear magnetic resonance (NMR, Bruker AVANCE 
III HD 600), Fourier transform infrared spectroscopy 
(FTIR, Bruker Alpha spectrometer), and Raman (Bruker 
RFS100/S) were conducted to characterize the electrolyte 
structure. The transmission electron microscopy (TEM, 
JEOL JEM 2800F), time-of-flight secondary ion mass 
spectrometer (TOF–SIMS, PHI nano TOF II), and X-ray 
photoelectron spectrometer (XPS, PHI-1600) with  Ar+ 
etching were employed to analyzed the solid electrolyte 
interphase (SEI). The scanning electron microscopy (SEM, 
Hitachi SU-70), atomic force microscopy (AFM, Bruker 
Corp., Dimension Icon), and in situ optical microscope 
(Leica DVM6) were performed to investigate the Zn plating 
morphology. The in situ X-ray diffraction (XRD, Bruker 
AXS, WI, USA) and in situ differential electrochemical 
mass spectrometry (DEMS) were applied to characterize 
the phase structure change and monitor the  H2 production, 
respectively, during charging/discharging process.

2.3  Electrochemical Characterizations

CR2032-type coin cells (canrd, Canrd Technology Co. 
Ltd.) were assembled for Zn||Zn, Zn||Cu and Zn||LMO 

cells with glass fiber membrane soaked in 150 μL solu-
tion (DLAB Scientific Co., Ltd) to test the long-term 
galvanostatic cycling on a Neware battery test system 
(CT-4008 T-5V50mA-164, Shenzhen, China). Electro-
chemical impedance spectroscopy (EIS), cyclic vol-
tammetry (CV) profiles, three-electrode-based meas-
urements of Tafel plots, and linear sweep voltammetry 
(LSV) were performed on CorrTest CS350 electrochemi-
cal workstation (Wuhan Corrtest Instruments Corp., 
Ltd.).

2.4  Molecular Dynamics Simulations

The molecular dynamics simulations were conducted 
through GROMACS [41] with AMBER force field [42]. 
The MD parameters for  SO4

2− and amino acid molecule 
were generated through Sobtop [43], and the corresponding 
atom charges were based on RESP charges. The  H2O mol-
ecule was simulated with the simple point charge model. 
The initial size of box was 10 × 10 × 10  nm3, and periodic 
boundary conditions were set in XYZ directions. The simu-
lation cells contained 8200  H2O, 300  ZnSO4, and 3 Phe. 
The electrostatic interactions were computed using PME 
methods. A cutoff length of 1.0 nm was used in the cal-
culation of electrostatic interactions and non-electrostatic 
interactions in real space. The integration time step was 
1 fs. The system was annealed from 0 to 298 K over a period 
of 0.5 ns, followed by running for another 2.0 ns to reach 
equilibrium. The temperature and pressure coupling was 
performed with V-rescale and Berendsen method, respec-
tively. Finally, a 10 ns production simulation was carried 
out for post-processing analysis. The pressure coupling 
method in production simulation period was changed to 
Parrinello–Rahman.

2.5  Quantum Chemistry Calculations

Quantum chemistry calculations were conducted through 
Gaussian (G09) program. The structure optimization and 
energy calculations were performed at B3LYP-D3(BJ)/
def2-SVP level. The calculations were carried out with the 
implicit universal solvation model based on solute electron 
density (SMD). The orbit was analyzed by Multiwfn pack-
age and VMD package [43].
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2.6  Density Functional Theory Calculations

First-principles calculations were performed using the 
Castep module in Materials Studio 2019 with density 
functional theory [44]. The Perdew–Bruke–Ernzerh of 
exchange–correlation functional of the generalized gradient 
approximation (GGA) was adopted, and the cutoff energy 
with the value of 800 eV was used in all the calculations. 
The Γ-centered k-point grids were used for Brillouin zone 
integrations. The convergence criterion for the electronic 
structure iteration was set at 1 ×  10−5 eV, while the geometry 
optimization was set to be 0.02 eV Å−1 on force. The 7 × 7 
supercell was used to model the Zn (002) surface, and a 
vacuum thickness of 15 Å was applied. The atoms in the top 
two layers were free to simulate surface state, and the atoms 
in the other layers were fixed during calculation.

3  Results and Discussion

3.1  Characterization of Electrolyte System

The highly electronegative carboxylate groups within the 
Phe molecule exhibit robust nucleophilic characteristics due 
to the regional electron enrichment induced by benzene ring 
ligands (Fig. 1d), allowing them effectively coordinate with 
 Zn2+ ions and optimizing the  Zn2+ solvation environment 
[45]. Subsequently, molecular dynamics simulations were 
conducted to explore the structure of the  Zn2+ solvation 
sheath on bare  ZnSO4 electrolyte (ZSO) and Phe-modified 
 ZnSO4-based electrolyte (ZSO/Phe). As obtained from the 
radial distribution functions (RDFs) for Zn–O  (H2O) in ZSO 
electrolyte (Figs. S5 and S6), a characteristic peak emerged 
at around 2 Å with an average coordination number (CN) 
reaching 5.2, suggesting that there are approximately six 
 H2O molecules coordinating with  Zn2+ within the primary 
 Zn2+ solvation shell. In contrast, after introducing Phe addi-
tive into the electrolyte, the Phe molecule intrudes the pri-
mary  Zn2+ solvation structure and forms chelation with  Zn2+ 
ions, as evidenced by the electrolyte box image of ZSO/
Phe electrolyte system (Fig. 1e). Additionally, the peaks 
of Zn–O originated from both Phe and  H2O are positioned 
approximately 2 Å away from  Zn2+, and the CN of Zn–O 
attributed to Phe and  H2O show around 0.1 and 4.9, respec-
tively (Fig. 1f). These results further validate the ability of 
Phe molecules to integrate into the primary  Zn2+ solvation 

sheath and displace the partially solvated  H2O molecules. 
Typically, solvated  H2O molecules are deemed thermody-
namically unstable at Zn deposition potential, representing 
a major contributing factor to the hydrogen evolution reac-
tion (HER) [46]. Therefore, the orchestrated regulation of 
the  Zn2+ solvation sheath is expected to curtail corrosion 
reactions induced by water molecules.

To delve deeper into the interaction mechanism of Phe 
additive in  ZnSO4-based electrolyte, a series of analyses 
were conducted, including liquid-state NMR, FTIR, and 
Raman spectroscopy. As displayed in Fig. 1g, the 2H peak 
of  D2O initially locates at 4.7062 ppm, while it shifts to 
4.7445 ppm upon introducing  ZnSO4 into  D2O solvent, 
indicating a reduction in electronic density of hydrogen 
due to the charge transfer between  Zn2+ and  H2O [47]. Sub-
sequently, with the addition of 20 mmol  L−1 Phe into the 
ZSO electrolyte, the peak position recovers to 4.7396 ppm. 
It gradually shifts to 4.7358 ppm with increased Phe con-
centration (up to 100 mmol  L−1), suggesting that the par-
tially confined  H2O molecules within the  Zn2+ solvation 
sheath are liberated. It is ascribed to the strong coordina-
tion effect between Phe molecule and  Zn2+ ions that facili-
tated by higher binding energy [48]. Furthermore, in the 
Raman spectra analysis (Fig. 1h), the characteristic peak at 
977  cm−1 is associated with the  SO4

2− (v(SO4
2−)), which 

can be deconvoluted into solvent-separated ion pair (SSIP) 
and contact ion pair (CIP) (Fig. S7) [48]. The SSIP/CIP ratio 
increases gradually with escalating Phe addition, reaching 
1.83 at 100 mmol  L−1 Phe concentration. This outcome 
confirms the involvement of Phe in the CIP by displacing 
 SO4

2− [48]. Additionally, the impact of Phe additive on  Zn2+ 
coordination structure was corroborated by FTIR analy-
sis (Fig. 1i). The vibration stretching of  SO4

2− (v(SO4
2−)) 

undergoes a noticeable blue shift from 1059.7  cm−1 (ZSO 
(s)) to 1080.2  cm−1 (ZSO (aq)) upon dissolving  ZnSO4 pow-
der in  H2O solvent. This shift indicates weakened interaction 
between  Zn2+ and  SO4

2− induced by primary  Zn2+ solvation 
sheath formation [25]. Upon introducing 20 mmol  L−1 Phe 
into the ZSO electrolyte, the v(SO4

2−) shifts to 1081.9  cm−1 
and further increases with higher Phe concentrations, reach-
ing 1085.6  cm−1 at 100 mmol  L−1 Phe additives. This indi-
cates that the Phe additive weakens the electrostatic coupling 
between  SO4

2− and  Zn2+ [25], confirming its influence on 
 Zn2+ coordination structure. Furthermore, in the long-wave-
length region of 2800–3700  cm−1 assigns three characteris-
tic peaks to the O–H stretching vibration, corresponding to 
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strong H-bond (3147  cm−1), weak H-bond (3307  cm−1), and 
non-H-bond (3477  cm−1) [30, 48], respectively (Fig. S8). 
As obtained from the H-bond proportion curves (Fig. S9), 
the intensity of strong H-bond gradually declines with Phe 
addition increasing, whereas the proportion of weak H-bond 
shows an upward trend. These observations suggest a sup-
pression in the reaction activity of  H2O molecules.

3.2  Characterization of the SEI Chemistry

To analyze the electrolyte/electrode interface, the 
TOF–SIMS andXPS with  Ar+ sputtering depth profil-
ing were employed. As shown in the XPS spectra of N 1s 
(Fig. 2a), the N-Zn (399.3 eV) and –NH-CO– (401.4 eV) 
bands exclusively exist at the top surface (0 min, before sput-
tering) of Zn anode cycled in ZSO/Phe electrolyte, demon-
strating the chemical adsorption of Phe molecules onto the 
Zn metal anode surface [35]. It is obviously observed that 
the ZSO/Phe electrolyte exhibits better wettability at 86.9° 
than ZSO electrolyte at 96.8°, which further confirms the 
strong adsorption ability of Phe molecules on Zn anode sur-
face (Fig. S10). However, the contact angle between ZSO/
Phe electrolyte and presoaked Zn anode of Phe-contained 
aqueous solution increases to 98.6°, exhibiting a hydro-
phobic tendency. As a contrast, the contact angle between 
ZSO/Phe electrolyte and presoaked Zn anode of deionized 
water remain nearly constant of 84.9°. This is ascribed to the 
adsorption of Phe molecules on Zn anode, where the hydro-
phobic benzene ring ligands toward the electrolyte, forming 
a molecular hydrophobic layer at the Zn/electrolyte inter-
face, contributing to suppressing water-mediated parasitic 
side reactions. Additionally, the signals of C-H (283.8 eV) 
and C-N (285.5 eV) in the C 1s spectrum are detected at 
the top surface [23], diminishing significantly after 1 min 
of  Ar+ etching. Meanwhile, the characteristic peak of C = O 
(530.8 eV) in the O 1s spectra displays relatively high inten-
sity before sputtering but gradually fades away after 8 min of 
etching, indicating an organic layer predominantly covering 
the electrode top surface [48]. The higher highest occupied 
molecular orbital (HOMO, − 6.5659 eV) and lower lowest 
unoccupied molecular orbital (LUMO, − 0.7816) of Phe 
molecules compared to  H2O molecules (Fig. 2b) promote 
preferential electron acquisition by adsorbed Phe. These 
facilitate Phe reduction on the Zn anode surface ahead 
of  H2O to form a hydrophobic organic layer with minute 

quantities of  H2 release [48]. In contrast, a series of new 
characteristic peaks in O 1s and S 2p spectra corresponding 
to ZnO (529.8 eV) [49], ZnS (161.1/162.5 eV) [50], and 
 ZnSO3 (166.3/166.9 eV) [50] emerge after 1 min of  Ar+ 
etching, and the intensities strengthen with increased etch-
ing time. This phenomenon demonstrates the in situ forma-
tion of ZnO, ZnS, and  ZnSO3 inorganic layers at the bottom 
of SEI. As shown in Fig. S11, the Phe molecule delivers 
higher binding energy of − 4.47 eV with  SO4

2− compared 
to  H2O, which enables the  SO4

2− ions migrate to Zn anode 
surface favorably through Phe adsorption layer to be reduced 
by  H2 with in situ formation of ZnO–ZnS–ZnSO3 inorganic 
layer [48]. Consequently, the Zn 2p spectrum exhibits sig-
nificantly weaker intensity at the top surface (0 min, before 
sputtering) compared to the sample under  Ar+ etching (Fig. 
S12), attributable to both the chemically adsorbed film and 
the in situ organic SEI layer [51]. Furthermore, the existence 
of  SO4

2− (168.5/169.9 eV) on the Zn anode surface primar-
ily originates from the precipitation of  ZnSO4 salt [48]. The 
TOF–SIMS was conducted to investigate the SEI chemis-
try induced by the Phe additive. Notably, the normalized 
intensity of organic  CN− and  CH− species decreases rapidly 
with increased sputtering depth, while that of ZnS, ZnO, and 
 ZnSO3 inorganic compounds increases significantly (Fig. 
S13). These observations indicate the uniform coverage 
of an organic layer composed of  CN− and  CH− species on 
the dense ZnS, ZnO, and  ZnSO3 inorganic layer, forming a 
gradient structure, as confirmed through three-dimensional 
(3D) visualization (Figs. 2c, S14, and S15). The organic 
layer enables the electrode/electrolyte interface with con-
siderable deformability to accommodate the volume changes 
in repeated charging/discharging processes and excellent 
hydrophobic properties to protect the Zn anode from corro-
sion caused by active water molecules. Meanwhile, the ZnO/
ZnS/ZnSO3-rich bottom layer maintains high mechanical 
rigidity and rapid  Zn2+ transport capability, enabling uni-
form  Zn2+ ions flux for dendrite-free Zn deposition. On the 
contrary, the Zn anode cycled in ZSO electrolyte presents 
thimbleful C element and inorganic ZnO/ZnS/ZnSO3 species 
(Fig. S16). Obviously, almost no N element exists on the sur-
face. To accurately determine the composition and structure 
of SEI formed in ZSO/Phe electrolyte, high-resolution TEM 
(HRTEM) was performed. The sample, prepared by deposit-
ing  Zn2+ on copper micro-grids within Phe/ZSO electrolyte, 
revealed an ultrathin amorphous layer on the outer layer of 
the electrodeposited Zn particles in the high-angle annular 
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dark-field (HAADF) image (Fig. 2d). This amorphous layer 
is attributed to the in situ formed adsorption layer and SEI 
induced by the Phe additive. The energy-dispersive X-ray 
spectroscopy (EDS) mapping confirms the uniform dis-
tribution of the in situ constructed organic and inorganic 
hybrid SEI layer composed of C, N, O, and S elements on 
the surface of the Zn anode (Figs. 2d and S17). Furthermore, 

HRTEM results reveal that the amorphous organic layer has 
a thickness of about 6 nm, and numerous lattice fringes of 
Zn (002) are observed inside the SEI layer (Fig. 2e–g). This 
suggests that the newly plated Zn is deposited through the 
protective interphase and preferentially grows with a favora-
ble (002) plane during the initial deposition stage. As a 
result, a dual effect is achieved, simultaneously suppressing 

Fig. 2  Characterization of SEI chemistry. a XPS depth profile of C 1s, N 1s, O 1s and S 2p for Zn anode cycled in ZSO/Phe electrolyte for 5 
cycles at a current density of 1 mA  cm−1. b HOMO − LUMO energy levels of Phe and water molecules. c 3D visualization of TOF–SIMS for 
 CH−,  CN−,  SO3

−, and  ZnS− in ZSO/Phe electrolyte. d HAADF image. e–g HRTEM image of the electrode interface and corresponding elemen-
tal mapping
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the corrosion of water molecules and inhibiting the forma-
tion of Zn dendrites.

3.3  Characterization of the Interfacial Interaction

To comprehensively comprehend the protective mechanism 
of the Phe additive in stabilizing the Zn anode and control-
ling deposition behavior, in situ Raman spectroscopy was 
employed within Zn||Zn symmetrical cells cycled in dif-
ferent electrolytes. As indicated in Fig. 3a, the Zn anode 
cycled in ZSO electrolyte displays a distinct characteristic 
peak at 362  cm−1, which is attributed to the aggregation of 
Zn(OH)4

2− induced by HER [52], revealing the vigorous 

corrosion reaction during Zn plating. The peak around 
916  cm−1, attributed to ν(SO4

2−) vibration [28], exhibits a 
slight decrease due to participation in interface side reac-
tions. Conversely, the cell with ZSO/Phe electrolyte did not 
exhibit Zn(OH)4

2− by-product enrichment. It is attributed to 
the collaborative action of the Phe adsorption film, in situ 
SEI formation, and regulation of  Zn2+ coordination environ-
ment that collectively restrains the decomposition of  H2O 
molecules. Furthermore, the XRD patterns of Zn anodes 
cycled in ZSO electrolyte reveal characteristic peaks at 7.9°, 
16.1°, and 24.3° corresponding to  Zn4(OH)6  (SO4)4·5H2O 
by-products, indicating rampant HER at electrode interface 
(Fig. 3b) [47]. In contrast, a pure Zn anode can be attained 

Fig. 3  Characterization of interfacial interaction. a In situ Raman spectrum for Zn anode tested in ZSO and ZSO/Phe electrolytes in  Zn2+ plat-
ing process. b XRD patterns of cycled Zn anodes. c In situ DEMS measurement of  H2 evolution rate within Zn||Cu cells. d LSV curves and e 
Tafel plots of Zn electrodes measured in ZSO and ZSO/Phe electrolytes. f CA curves at an overpotential of − 150 mV within Zn||Zn cells (inset: 
schematic diagrams of 2D and 3D diffusion process of  Zn2+). In situ optical microscopic images of Zn plating process in g ZSO and h ZSO/Phe 
electrolytes
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in the ZSO/Phe electrolyte, aligning with the in situ Raman 
spectra results. To quantitatively analyze the HER reaction 
rate, in situ differential electrochemical mass spectrometry 
(DEMS) was carried out on Zn||Cu half cells with different 
electrolytes. As displayed in Fig. 3c, the  H2 evolution rate 
in the ZSO electrolyte sharply increases to 4.81 mmol  h−1 
at 0.5 V, indicating severe corrosion reactions during Zn 
plating. By contrast, the cell employing ZSO/Phe electro-
lyte displays significantly suppressed HER, registering only 
0.59 mmol  h−1 at the early charging step. On the one hand, 
the amino and carboxyl groups are liable to chelate with 
 Zn2+ for weakening the reactivity of solvated  H2O mol-
ecules. The lower onset HER potential of ZSO/Phe elec-
trolyte, deduced from linear scanning voltammetry (LSV), 
further supports the aforementioned results (Fig. 3d). On 
the other hand, the hydrophobic groups, including benzene 
ring, and the Phe-induced SEI together constitute a drainage 
layer that restrains the  H2O-mediated parasitic side reac-
tions. For an accurate assessment of anti-corrosion capabil-
ity, corrosion current density and corrosion potential were 
investigated through Tafel plots (Fig. 3e). Remarkably, the 
Zn anode in ZSO/Phe electrolyte exhibits a more positive 
corrosion potential (− 0.953 vs. − 0.971 V) and lower corro-
sion current density (1.8  vs. 6.1 mA  cm−2) compared to that 
in ZSO electrolyte, confirming the superior performance of 
Phe additive in inhibiting side reactions. Besides, the  Zn2+ 
diffusion behavior on the Zn anode surface was analyzed via 
the chronoamperometry (CA) curves. The current density 
for Zn||Zn cells tested in ZSO/Phe electrolyte rapidly stabi-
lizes at − 35.4 mA  cm−2 after a short 2D diffusion process 
at an overpotential of − 150 mV on the Zn anode (Fig. 3f), 
demonstrating a sustained 3D diffusion process after nuclea-
tion. The hydrophilic units reduce the interfacial free energy 
between the Zn electrode and the electrolyte while attracting 
the  Zn2+ ions migration to Zn anode surface, guiding the 
 Zn2+ homogeneous deposition (inset in Fig. 3f). In contrast, 
the Zn||Zn cell in ZSO electrolyte displays continuous cur-
rent density increase within 35 s, indicating a rampant 2D 
diffusion with lateral  Zn2+ diffusion along the surface and 
deposition at the most favorable energy position. This may 
lead to potential safety hazard with dendrite growth and 
short circuit [49]. Subsequently, the actual  Zn2+ deposition 
process was examined by in situ optical microscopy, reveal-
ing randomly distributed protrusions on the Zn anode sur-
face during electrodeposition in ZSO electrolyte (Fig. 3g). 
The size of protrusions on the Zn anode surface increases 

from 65 to 100 μm as deposition time increasing from 20 to 
50 min. In addition, distinctly irregular interface is observed 
on the Zn anode surface after 50 min of plating in the ZSO 
electrolyte (Fig. S18), resulting in Zn dendrite formation 
finally. In sharp contrast, a uniform and dense dendrite-free 
Zn deposition layer with 63 μm thickness is observed on 
the Zn anode surface after 50 min of plating in the ZSO/
Phe electrolyte (Fig. 3h), which further confirms the positive 
effect of adsorbed Phe molecules and the well-defined SEI 
layer in promoting uniform  Zn2+ ions deposition.

3.4  Reversible Zn Plating/Stripping Stability 
Characterization

To certificate the protective effect of Phe additive on the sta-
bility and reversibility of Zn anode, extensive galvanostatic 
cycling experiments were conducted on Zn||Zn symmetrical 
cells and Zn||Cu half cells. As shown in Fig. 4a, the sym-
metrical cells with ZSO electrolyte experience rapid short-
circuiting after only 80 h of cycling due to rampant dendrite 
growth (Fig. S19). In contrast, the cells utilizing ZSO/Phe 
electrolyte demonstrate an extended lifespan exceeding 
5250 h with a high overpotential of approximately 138 mV 
at 2 mA  cm−2, 2 mAh  cm−2 (Fig. S20), which is equivalent 
to an ultrahigh cumulative plated capacity of 5.25 Ah  cm−2, 
almost 65 times greater than that achieves using ZSO elec-
trolyte. Optimal protection is achieved with a Phe additive 
concentration of 20 mmol  L−1, outperforming concentra-
tions of 50 and 100 mmol  L−1 (Fig. S21). As indicated in 
Fig. S22, the Zn||Zn symmetric cells employing 20 mmol 
 L−1 Phe electrolyte exhibit greater charge transfer resistance 
(Rct) compared with ZSO electrolyte before cycles. This may 
be attributed to the Phe molecules adsorption layer on Zn 
anode surface. Significantly, the Rct of battery using ZSO/
Phe electrolyte decreases after 10 cycles, which implies the 
enhanced  Zn2+ conductivity of organic–inorganic dual-pro-
tective SEI. On the contrary, the Rct of batteries using ZSO 
electrolyte remarkably increases due to rampant Zn den-
drites growth and  Zn4(OH)6  (SO4)4·5H2O insulating species 
formation that blocks  Zn2+ transport path. In addition, the 
EIS curves of Zn||Zn symmetric cells cycled in 20 mmol  L−1 
Phe electrolyte exhibit a smaller Rct than 50 and 100 mmol 
 L−1 Phe that contributes to improve the electrode reaction 
kinetics for Zn/Zn2+ redox (Fig. S23). Moreover, the protec-
tion effect of the Phe additive is validated under more harsh 
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conditions, showcasing superior cycling stability of 2645 h 
at 5 mA  cm−2, 990 h at 10 mA  cm−2, 466 h at 20 mA  cm−2, 
338 h at 30 mA  cm−2, and 155 h at 50 mA  cm−2, respec-
tively, (Figs.  4a, b and S24). These cumulative plated 

capacities surpass most reported Zn metal anode protec-
tion strategies, including seven other amino acid additives 
(Figs. 4c and Table S1) [25, 33, 48, 53–58]. Besides, the rate 
performances of Zn||Zn symmetrical cells were investigated 

Fig. 4  Reversible Zn plating/stripping stability characterization. a, b Long-term galvanostatic cycling of Zn||Zn cells at current density of 2, 5, 
10, 20, 30, and 50 mA  cm−2, respectively. c Comparison of cumulative plated capacity with previously reported. d Rate performances of Zn||Zn 
cells in different electrolytes. e Galvanostatic cycling of Zn||Zn cells in diluted electrolyte. f CV curves for Zn nucleation of Zn-Ti cells in dif-
ferent electrolytes. g CE of the Zn plating/stripping in Zn||Cu cells. h In situ XRD measurements on Zn||Zn cells during charging/discharging 
process. i, j AFM images of the cycled Zn in different electrolytes
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simultaneously. While the cell with bare electrolyte experi-
ences severe voltage fluctuation at 20 mA  cm−2, the cell with 
ZSO/Phe electrolyte maintains a stable voltage profile across 
various current densities of 5, 10, 20, 30, and 50 mA  cm−2, 
sustaining stability for over 460 h even when the current 
density reverted to 5 mA  cm−2 (Fig. 4d). This exemplifies 
the Phe additive’s exceptional capability in regulating Zn 
plating and stripping kinetics. Significantly, even when the 
electrolyte concentration is diluted tenfold, the Zn anode 
cycled in ZSO-/Phe-dilute electrolyte also shows stable Zn 
deposition, surpassing 700 h at 2 mA  cm−2, 2 mAh  cm−2, 
and 279 h at 5 mA  cm−2, 5 mAh  cm−2 (Fig. 4e). This reaf-
firms the practical feasibility of Phe additive utilization in 
AZIBs. To investigate the nucleation process, cyclic vol-
tammetry (CV) curves were conducted on Zn||Ti half cells. 
As obtained from Fig. 4f, the cell with ZSO/Phe electro-
lyte demonstrates an improved nucleation overpotential of 
47 mV due to the enhanced reaction energy barrier of Zn 
deposition caused by the presence of Phe molecules adsorp-
tion layer (Fig. S25), which is conducive to drive smaller 
nucleus radius as well as promote smooth and fine-grained 
Zn deposits [59]. Consequently, the Zn||Cu half cells main-
tain excellent Zn plating/stripping reversibility for 934 
cycles with an average coulombic efficiency (CE) of 99% 
(Fig. 4g). The corresponding voltage profiles are displayed 
in Fig. S26, where moderate voltage hysteresis of 118 mV 
and stable CE exportation are observed. Contrarily, the cells 
using ZSO electrolyte experience fluctuating CE, dropping 
sharply to 30.7% at 218 cycles due to continuous side reac-
tions at deteriorating interfaces. Remarkably, the Zn||Cu 
half cells cycled in ZSO-/Phe-dilute electrolyte maintain a 
higher average CE of 98.4% within 218 cycles (Fig. S27). 
This underscores the overwhelming superiority of the Phe 
additive in enhancing the reversibility of Zn anode.

Subsequently, in situ XRD measurements were taken 
on Zn||Zn symmetrical cells to explore the Zn deposition 
behavior optimized by Phe additive. As depicted in Fig. 4h, 
the Zn anode cycled in ZSO/Phe electrolyte always delivers 
a stronger characteristic peak of Zn (002) crystal plane at 
around 36.2° compared to that in ZSO electrolyte during the 
plating/stripping process, indicating that the Phe molecules 
adsorption layer guides the preferential Zn nucleation with 
favorable (002) plane at initial plating stage, thereby induc-
ing  Zn2+ uniform deposition [47]. This result is consistent 
with the HRTEM measurement. In addition, the Zn deposi-
tion morphology was further investigated by atomic force 

microscope (AFM). The Zn anode cycled in ZSO electro-
lyte exhibits numerous lamellar Zn deposition structure with 
anisotropic (Fig. 4j), which may enlarge the contact areas 
between electrode and electrolyte, thus leading to severe 
corrosion reactions without interrupting [60]. Notably, a 
dense and smooth Zn deposition layer can be observed in 
ZSO/Phe electrolyte (Fig. 4i), which is responsible for the 
superior cycling stability and reaction reversibility of Zn 
anode even in harsh conditions. On larger scales, the SEM 
measurements of the deposited Zn metal for 5 cycles at 1, 
2, and 5 mA  cm−2 and 5 mA  cm−2 were taken (Figs. S28 
and S29). The Zn anode cycled in ZSO electrolyte exhibits 
numerous irregular structures, and the deposition morphol-
ogy tends to get more looser with higher current densities. 
On the contrary, the Zn anode cycled in ZSO/Phe electrolyte 
exhibits a smooth and dendrite-free Zn deposition morphol-
ogy even at higher current density, which further testify the 
unique regulation of amphipathic groups in Phe compound 
for dendrite-free Zn deposition.

3.5  Zn||LMO Full Cell Performance

Ultimately, the electrochemical performances of the full 
cells comprising LMO cathode and Zn anode were tested 
to validate the practicability of Phe-contained electrolytes. 
The CV curves of Zn||LMO full cells using ZSO and ZSO/
Phe electrolytes all exhibit a pair of redox peaks (Fig. S30). 
Figure 5a displays the long-term cycling performance of full 
cells employing ZSO/Phe electrolyte at current density of 
1 C (148 mA  g−1), where a considerable initial capacity of 
106.9 mAh  g−1 and a high capacity retention of 77.3% after 
300 cycles are achieved, significantly outperforming the 
ZSO system that retaining only 27.9% of the initial capac-
ity after 125 cycles. Benefiting from the triple protection 
of Phe additive, including solvation structure regulation, 
amphipathic molecular adsorption, and organic–inorganic 
hybrid SEI formation, the Zn||LMO full cell delivers highly 
consistent charge/discharge profile (Fig. 5b) and smooth Zn 
anode (Fig. 5d). In sharp contrast, the severe dendrite growth 
and corrosion sites occurred in the ZSO system (Fig. 5e) 
may gobble up the Zn anode while exhausting the electro-
lyte, undoubtedly resulting in the capacity fading and CE 
decreasing (Fig. 5c). Furthermore, the  ZnSO4-based elec-
trolyte concentration is diluted by 10 times to testify the 
modification of Phe additive on reversibility of Zn anode, 
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where the Zn||LMO full cells employing ZSO-/Phe-dilute 
electrolyte exhibits stable capacity output that 55% capac-
ity retention after 100 cycles (Fig. S31), whereas the sys-
tem of ZSO-dilute electrolyte without additive participation 
displays a sharp capacity decline and lower CE at initial 
charging/discharging process. It is more notable that the 
Zn||LMO full cells with ZSO/Phe electrolyte display supe-
rior rate performance, corresponding to a higher average 
discharge capacity of 95.2 mAh  g−1 with CE of 99.2% at 
5 C and a reversible specific capacity of 102.1 mAh  g−1 
after returning to 1 C (Fig. 5f), which outperforms the ZSO 
system of exhibiting lower rate capacity of 83.8 mAh  g−1 at 
5 C. Subsequently, a single-layer pouch cell was assembled 

with ZSO/Phe electrolyte to successfully drive the airplane 
model moving toward (Fig. 5g, h), which further verify the 
practical application of Phe additive in AZIBs.

4  Conclusion

In conclusion, we have introduced the highly biocompatible 
amino acids molecules as electrolyte additive into AZIBs 
to address the issues of Zn anode corrosion and regulate 
the  Zn2+ uniform deposition. The Phe molecule featuring 
benzene ring ligands embraces higher adsorption energy for 
Zn anode to constitute a protective layer for synergistically 

Fig. 5  Zn||LMO full cell performance. a Long-term cycling performance at a current density of 1 C. The corresponding voltage–capacity profile 
in b ZSO/Phe and c ZSO electrolytes. SEM images of cycled Zn anode in ZSO/Phe d ZSO e electrolytes. f Rate performance at rates of 1, 2, 3, 
and 5 C. g, h Digital photo of open-circuit voltage for the pouch Zn||LMO cell and a model airplane in action powered by Zn||LMO cell
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homogenizing  Zn2+ distribution and insulating water mol-
ecules, while the adjacent hydroxyl and carboxyl groups 
incline to form chelating bonds with  Zn2+ through lone pair 
electrons, rendering efficient solvation based on  Zn2+-Phe 
coordination for weakening the reactivity of  H2O molecules. 
Moreover, the preferential reduction of Phe molecules prior 
to  H2O promotes in situ formation of organic–inorganic 
hybrid SEI for enhancing the interfacial stability of the Zn 
anode. Benefiting from the triple protection of Phe con-
taining electrolyte, all of the Zn||Zn, Zn||Cu, and Zn||LMO 
cells display significantly improved electrochemical perfor-
mances. Even at extreme diluted electrolytes, the Zn anode 
still exhibits an ultralong cycle life of 700 h under the condi-
tion of 2 mA  cm−2, 2 mAh  cm−2, confirming the feasibility 
of the electrolyte engineering for practical applications in 
AZIBs.
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